Roll No.

							-

Total No. of Questions: 09

B.Tech. (2011 Onwards) (Sem.-2)
 ENGINEERING MATHEMATICS-II

Subject Code : BTAM-102
 Paper ID : [A1111]

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Write briefly :
(a) Determine for what values of a and b, the differential equation:

$$
\left(y+x^{3}\right) d x+\left(a x+b y^{3} d y=0\right) \text { is exact? }
$$

(b) Solve the differential equation: $y^{\prime}+4 x y+x y^{3}=0$.
(c) Factorizing the differential operator, reducing it into first order equations, solve the differential equation : $y^{\prime \prime}-4 y^{\prime}-5 y=0$.
(d) Find the general solution of the equation : $4 y^{\prime \prime}-4 y^{\prime}+y=e^{\frac{x}{2}}$.
(e) On putting $x=e^{z}$, find the transformed differential equation of $x^{2} y^{\prime \prime}+x y^{\prime}+y=x$.
(f) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right]$ and find its inverse.
(g) Define orthogonal and unitary matrices with suitable examples.
(h) State different forms of comparison test.
(i) Prove that the series: $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots \ldots \ldots \ldots .$. is convergent but not absolutely convergent.
(j) Prove that $w=\operatorname{cosz}$ is not a bounded function.

SECTION-B

2. Solve the differential equation: $\left(5 x^{3}+12 x^{2}+6 y^{2}\right) d x+6 x y d y=0$.
3. Find the general solution of the equation : $y "+16 y=32 \sec 2 x$, using the method of variation of parameters.
4. Solve : $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos \log (1+x)$.
5. An inductance of 2 Heneries and a resistance of 20 Ohms are connected in series with e.m.f. E volts. If the current is zero when $t=0$, find the current at the end of 0.01 second if $\mathrm{E}=100$ volts.

SECTION-C

6. Using Gauss-Jordan method, find the inverse of the matrix, $A=\left[\begin{array}{lll}2 & 3 & 1 \\ 1 & 3 & 3 \\ 0 & 1 & 2\end{array}\right]$.
7. (i) Find the eigen-values and the corresponding eigen-vectors of the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

(ii) Does the series : $\sum_{n=1}^{\infty} \frac{\ln n}{n^{\frac{3}{2}}}$ converge? Justify.
8. Examine the convergence or divergence of the following series :
(i) $\sum_{n=1}^{\infty} \frac{n+1}{n}$,
(ii) $\sum_{n=1}^{\infty} \frac{4^{n} n!n!}{(2 n)!}$,
(iii) $\sum_{n=0}^{\infty} \frac{n^{2}}{2^{n}}$,
(iv) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{2}}$,
9. (i) Find all values of which satisfy, $e^{z}=1+i$.
(ii) Find real and imaginary parts of $\log [(1+i) \log i]$.
(iii) If $\tan (x+i y)=i$, where x and y are real, prove that x is indeterminate and y is infinite.

